Block Neural Network Avoids Catastrophic Forgetting When Learning Multiple Task
نویسندگان
چکیده
In the present work we propose a Deep Feed Forward network architecture which can be trained according to a sequential learning paradigm, where tasks of increasing difficulty are learned sequentially, yet avoiding catastrophic forgetting. The proposed architecture can re-use the features learned on previous tasks in a new task when the old tasks and the new one are related. The architecture needs fewer computational resources (neurons and connections) and less data for learning the new task than a network trained from scratch
منابع مشابه
Diffusion-based neuromodulation can eliminate catastrophic forgetting in simple neural networks
A long-term goal of AI is to produce agents that can learn a diversity of skills throughout their lifetimes and continuously improve those skills via experience. A longstanding obstacle towards that goal is catastrophic forgetting, which is when learning new information erases previously learned information. Catastrophic forgetting occurs in artificial neural networks (ANNs), which have fueled ...
متن کاملMeasuring Catastrophic Forgetting in Neural Networks
Deep neural networks are used in many state-of-the-art systems for machine perception. Once a network is trained to do a specific task, e.g., bird classification, it cannot easily be trained to do new tasks, e.g., incrementally learning to recognize additional bird species or learning an entirely different task such as flower recognition. When new tasks are added, typical deep neural networks a...
متن کاملSelf-refreshing Som as a Semantic Memory Model
Natural and artificial cognitive systems suffer from forgetting information. However, in natural systems forgetting is typically gradual whereas in artificial systems forgetting is often catastrophic. Catastrophic forgetting is also a problem for the Self-Organizing Map (SOM) when used as a semantic memory model in a continuous learning task in a nonstationary environment. Methods based on rehe...
متن کاملAn Empirical Investigation of Catastrophic Forgeting in Gradient-Based Neural Networks
Catastrophic forgetting is a problem faced by many machine learning models and algorithms. When trained on one task, then trained on a second task, many machine learning models “forget” how to perform the first task. This is widely believed to be a serious problem for neural networks. Here, we investigate the extent to which the catastrophic forgetting problem occurs for modern neural networks,...
متن کاملOvercoming catastrophic forgetting with hard attention to the task
Catastrophic forgetting occurs when a neural network loses the information learned in a previous task after training on subsequent tasks. This problem remains a hurdle for artificial intelligence systems with sequential learning capabilities. In this paper, we propose a task-based hard attention mechanism that preserves previous tasks’ information without affecting the current task’s learning. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.10204 شماره
صفحات -
تاریخ انتشار 2017